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Abstract. We propose a simple geometrical approach for finding robustness of entanglement for Bell de-
composable states of two-qubit quantum systems. It is shown that for these states robustness is equal to
the concurrence. We also present an analytical expression for two separable states that wipe out all en-
tanglement of these states. Random robustness of these states is also obtained. We also obtain robustness
of a class of states obtained from Bell decomposable states via some special local operations and classical
communications (LOCC).

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.)

1 Introduction

During past decade an increasing study has been made on
entanglement, although it was discovered several decades
ago by Einstein and Schrödinger [1,2]. This is because of
the central role that entanglement plays in the theory of
quantum information [3–5]. Entanglement as the most non
classical features of quantum mechanics is usually arise
from quantum correlations between separated subsystems
which can not be created by local actions on each subsys-
tem. By definition, a mixed state ρ of a bipartite system
is said to be separable (non entangled) if it can be written
as a convex combination of pure product states

ρ =
∑

i

pi

∣∣φA
i

〉 〈
φA

i

∣∣⊗ ∣∣ψB
i

〉 〈
ψB

i

∣∣ , (1)

where
∣∣φA

i

〉
and

∣∣ψB
i

〉
are pure states of subsystems A and

B, respectively. Although, in the case of pure states of
bipartite systems it is easy to check whether a given state
is, or is not entangled, the question is yet an open problem
in the case of mixed states.

There is also an increasing attention in quantifying
entanglement, particularly for mixed states of a bipar-
tite system, and a number of measures have been pro-
posed [5–8]. Among them the entanglement of formation
has more importance, since it intends to quantify the re-
sources needed to create a given entangled state.

One useful quantity introduced in [9] as a measure
of entanglement is robustness of entanglement. It corre-
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sponds to the minimal amount of mixing with separable
states which washes out all entanglement. Analytical ex-
pression for pure states of binary systems have given in [9].
Authors in [10] gave a geometrical interpretation of ro-
bustness and pointed that two corresponding separable
states needed to wipe out all entanglement are necessarily
on the boundary of separable set. Unfortunately, above
mentioned quantity as most proposed measures of entan-
glement involves extremization which are difficult to han-
dle analytically.

In this paper we consider Bell decomposable (BD)
states. We provide a simple geometrical approach and give
an analytic expression for robustness of entanglement and
show that the corresponding separable states are on the
boundary of separable states as pointed out in [10]. Our
approach to the calculation of robustness of entanglement
is geometrically intuitive. It is shown that for considered
states robustness is equal to the concurrence of states. We
also obtain random robustness for BD states. By defining
new norm based on spin flip operation and using some lo-
cal operations and classical communications (LOCC), we
also obtain robustness of some particular classes of mixed
states.

The paper is organized as follows. In Section 2 we re-
view BD states and present a perspective of their geome-
try. Robustness of entanglement of these states is obtained
in Section 3 via a geometrical approach. We also obtain
random robustness. Definition of new norm and robust-
ness of some special two-qubit states, obtained via LOCC,
is presented in Section 4. The paper is ended with a brief
conclusion in Section 5.
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2 Bell decomposable states

In this section we briefly review Bell decomposable (BD)
states and some of their properties (for a detail see
Ref. [11]). A BD state is defined by:

ρ =
4∑

i=1

pi |ψi〉 〈ψi| , 0 ≤ pi ≤ 1,
4∑

i=1

pi = 1, (2)

where |ψi〉 is Bell state, given by:

|ψ1〉 =
∣∣φ+

〉
=

1√
2
(|↑↑〉 + |↓↓〉), (3)

|ψ2〉 =
∣∣φ−〉 =

1√
2
(|↑↑〉 − |↓↓〉), (4)

|ψ3〉 =
∣∣ψ+

〉
=

1√
2
(|↑↓〉 + |↓↑〉), (5)

|ψ4〉 =
∣∣ψ−〉 =

1√
2
(|↑↓〉 − |↓↑〉). (6)

In Hilbert-Schmidt representation ρ can be written as

ρ =
1
4

(
I ⊗ I +

3∑
i=1

tiσi ⊗ σi

)
, (7)

where

t1 = p1 − p2 + p3 − p4,

t2 = −p1 + p2 + p3 − p4,

t3 = p1 + p2 − p3 − p4. (8)

From positivity of ρ we get

1 + t1 − t2 + t3 ≥ 0,
1 − t1 + t2 + t3 ≥ 0,
1 + t1 + t2 − t3 ≥ 0,
1 − t1 − t2 − t3 ≥ 0. (9)

These equations form a tetrahedral with its vertices lo-
cated at (1,−1, 1), (−1, 1, 1), (1, 1,−1), (−1,−1,−1) [11].
In fact these vertices correspond to the Bell states of equa-
tions (3–6), respectively.

According to the Peres and Horodecki’s condition for
separability [12,13], a two-qubit density matrix is sepa-
rable if and only if its partial transpose is positive. This
implies that ρ given in equation (7) is separable if and
only if ti satisfy equations (9) together with the following
equations

1 + t1 + t2 + t3 ≥ 0,
1 − t1 − t2 + t3 ≥ 0,
1 + t1 − t2 − t3 ≥ 0,
1 − t1 + t2 − t3 ≥ 0. (10)

As Horodeckis have shown in reference [11], inequali-
ties (9, 10) form an octahedral with its vertices located
at O±

1 = (±1, 0, 0), O±
2 = (0,±1, 0) and O±

3 = (0, 0,±1).

Fig. 1. All BD states are defined as points interior to tetrahe-
dral. Vertices P1, P2, P3 and P4 denote projectors correspond-
ing to Bell states equations (3–6), respectively. Octahedral
corresponds to separable states.

This means that tetrahedral of equations (9) is divided
into five regions. Central regions, defined by octahedral,
are separable states. There are also four smaller equiva-
lent tetrahedral corresponding to entangled states. Each
tetrahedral takes one Bell state as one of its vertices. Three
other vertices of each tetrahedral form a triangle which is
its common face with octahedral (see Fig. 1).

As far as entanglement is concerned the states ρ and
ρ′ are equivalent if they are on the same orbit of the
group of local unitary transformation, that is, if there
exist local unitary transformation U1 ⊗ U2 such that
ρ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)†, where U1 and U2 are uni-
tary transformations acting on Hilbert spaces of particles
A and B, respectively. It is easy to show that for any uni-
tary transformation U there is a unique rotation O such
that [11]

U n̂ · σ U † = (O n̂) · σ. (11)

Now if the state given in equation (7) is subjected to the
U1 ⊗ U2 transformations the matrix T = diag(t1, t2, t3) is
no longer diagonal and transforms as

T ′ = O1TO
T
2 , (12)

where Oi denote rotation matrices correspond to the local
unitary matrices Ui. This means that all the results which
we are going to obtain for Bell decomposable states given
in equation (7) also satisfy for arbitrary density matrix
with T ′ give in equation (12).

3 Robustness of entanglement

According to [9] for a given entangled state ρ and sep-
arable state ρs, a new density matrix ρ(s) can be con-
structed as,

ρ(s) =
1

s+ 1
(ρ+ sρs), s ≥ 0, (13)

where it can be either entangled or separable. It was
pointed that there always exits the minimal s correspond-
ing to ρs such that ρ(s) is separable. This minimal s
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O+
2

O−
1

O−
3
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3
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Fig. 2. Two local pseudomixture for entangled state ρ (de-
noted with point t). Relative robustness of ρ with respect to
states lying on the separable plan O+

1 O
+
2 O

+
3 are minimum.

is called the robustness of ρ relative to ρs, denoted by
R(ρ ‖ ρs). The absolute robustness of ρ is defined as the
quantity,

R(ρ ‖ S) ≡ min
ρs∈S

R(ρ ‖ ρs). (14)

Du et al. in [10] gave a geometrical interpretation of ro-
bustness and pointed that if s in equation (13) is minimal
among all separable states ρs, i.e. s is the absolute robust-
ness of ρ, then ρs and ρ(s) in equation (13) are necessarily
on the boundary of the separable states.

In this section we obtain absolute robustness for all
Bell diagonal states, and give an explicit form for the cor-
responding ρs and ρ(s) which are on the boundary of the
separable states. To this aim, we first suppose that sepa-
rable state ρs that minimize equation (14) lies on octahe-
dral. Consider point t, corresponding to density matrix ρ,
in entangled region dominated by singlet state |ψ−〉 (see
Fig. 2). We draw two lines from the point t, one that
cuts separable plane O+

1 O
+
2 O

+
3 at t′′ and the other that

cuts separable plane O−
1 O

+
2 O

+
3 at t̃′′, where its exten-

sion cuts plane P1P2P3 at t′′. These lines cut separable
plane O−

1 O
−
2 O

−
3 at points t′ and t̃′, respectively. Since

planes O−
1 O

−
2 O

−
3 and O+

1 O
+
2 O

+
3 are parallel, it follows

that
| tt′ |
| t′t′′ | =

| tt̃′ |
| t̃′t′′ | ≤

| tt̃′ |
| t̃′t̃′′ | , (15)

that is, robustness of ρ relative to separable states lying
on the plane O+

1 O
+
2 O

+
3 is less than those which lie on

the plane O−
1 O

+
2 O

+
3 . Similarly we can obtain the same re-

sult for other separable planes O+
1 O

+
2 O

−
3 and O+

1 O
−
2 O

+
3 .

This means that as far as robustness of ρ relative to sep-
arable states ρs defined by octahedral is concerned, those
separable states that lie on the plane O+

1 O
+
2 O

+
3 have min-

O+
2

O−
1

O−
3

O+
1

P2

O+
3

t

t′′

P4

O P1

P3

t′

O−
2

Fig. 3. Point t denotes a generic state ρ in entangled region
dominated by singlet state

∣∣ψ−〉 and points t′ and t′′ are, re-
spectively, on the separable boundary planes defined by equa-
tions x1 + x2 + x3 + 1 = 0 and x1 + x2 + x3 − 1 = 0.

imum robustness. Before we show that this is, indeed, the
minimum over all possible separable states, we try to cal-
culate it. We first note that as above argument show, ro-
bustness of ρ relative to all separable states that lie on
the plane O+

1 O
+
2 O

+
3 are equal. To give a general frame-

work for ρs we note that plane O+
1 O

+
2 O

+
3 is reflection of

plane O−
1 O

−
2 O

−
3 with respect to octahedral center. Con-

sidering this fact, we connect t, corresponding to density
matrix ρ, to the center of octahedral such that cuts the
plane O−

1 O
−
2 O

−
3 at t′ (see Fig. 3). Then we extend this

segment, where it cuts the other plane O+
1 O

+
2 O

+
3 at t′′.

Three points t, t′ and t′′ are along the same line but
they posses different lengths. Also it is not difficult to see
that they also lie on planes x1 +x2 +x3 +η = 0, x1 +x2 +
x3 + 1 = 0 and x1 + x2 + x3 − 1, respectively. Using the
above argument, we arrive after some elementary algebra
at the following results

t′i =
ti
η

=
−ti

t1 + t2 + t3
, (16)

t′′i =
−ti
η

=
ti

t1 + t2 + t3
· (17)

Now using the convexity of the set of density matrices, we
can write ρ′s as,

ρ′s =
1

1 + s
(ρ+ sρ′′s ), (18)

where parameter s, called robustness of ρ, can be ob-
tained as

s =
| t t′ |
| t′ t′′ | =

−(1 + t1 + t2 + t3)
2

= 2p4 − 1 = C, (19)



296 The European Physical Journal D

where equations (8) have been used and C is concurrence
of ρ [8]. Also as we mentioned above robustness of ρ rel-
ative to all separable states lying in the separable plane
O+

1 O
+
2 O

+
3 is equal to that given in equation (19). Among

them there exist some states ρ that can be simultaneously
written as

ρ = (1 + s)ρ′s − sρ′′s = (1 − λ)
∣∣ψ−〉 〈ψ−∣∣+ λρ′′s (20)

where (1 − λ) = s = C (for detail see Ref. [14]). For the
second decomposition, called Lewenstein-Sanpera decom-
position, authors in [15] have shown that average concur-
rence of the decomposition is equal to the concurrence for
all two-qubit density matrices.

Vidal et al. in [9] have shown that R(ρ ‖ ρs) is a convex
function of ρs. This means that any local minimum is also
the absolute one, thus to finding absolute minimum of
R(ρ ‖ ρs) as a function of ρs it is enough to find local
minimum.

As we have already shown the robustness given in
equation (19) is minimum over all Bell decomposable
states. Here we have to show that it is minimum with
respect to all separable states. Let us consider the generic
separable states ρ′s and ρ′′s defined by

ρ′s =
∑

i

p′i |ψi〉 〈ψi| +
∑
i,j

aij |ψi〉 〈ψj | (21)

ρ′′s =
∑

i

p′′i |ψi〉 〈ψi| +
∑
i,j

bij |ψi〉 〈ψj | (22)

where aii = bii = 0 for i = 1, 2, 3, 4. Now in order to
writing ρ as pseudomixture of the above separable states

ρ = (1 + s)ρ′s − sρ′′s , (23)

the following equations must hold

pi = (1 + s)p′i − sp′′i , (24)
(1 + s)aij − s bij = 0. (25)

Now one can easily obtain robustness of ρ relative to ρ′s as

s =
‖ ρ− ρ′s ‖
‖ ρ′s − ρ′′s ‖

=

√ ∑
i(pi − p′i)2 + Tr(AA†)∑

i(p
′
i − p′′i )2 + Tr(A−B)(A −B)†

=

√ ∑
i(pi − p′i)2 + Tr(AA†)∑

i(p
′
i − p′′i )2 + 1

s2 Tr(AA†)
, (26)

where A and B are matrices with matrix elements aij

and bij , respectively, and in the last line we have used
equation (25). By solving equation (26) for robustness s
we get

s =

√∑
i(pi − p′i)2∑
i(p

′
i − p′′i )2

· (27)

Equation (27) shows that off-diagonal elements of ρ′s and
ρ′′s (in basis that ρ is diagonal) play no role in robustness.

This means that the robustness given in equation (19) is
local minimum, thus according to reference [9] it is abso-
lute minimum.

In the pioneering paper [9], robustness of entanglement
for Werner states as a special kind of BD states (that is,
p1 = p2 = p3 = (1− p4)/3, where p4 = F is their fidelity),
has been obtained from an entirely different approach. We
see that the treatment applied for Werner states leads to
the same answer as obtained in [9].

Finally, We would like to emphasis that our treatment
is capable to give explicit expression for separable matri-
ces ρ′s and ρ′′s . Since, using equations (16, 17, 7) we can
write ρ′s and ρ′′s as

ρ′s =
1

4(t1 + t2 + t3)

×


t1 + t2 0 0 −t1 + t2

0 t1 + t2 + 2t3 −t1 − t2 0

0 −t1 − t2 t1 + t2 + 2t3 0

−t1 + t2 0 0 t1 + t2

 ,

(28)

ρ′′s =
1

4(t1 + t2 + t3)

×


t1 + t2 + 2t3 0 0 t1 − t2

0 t1 + t2 t1 + t2 0

0 t1 + t2 t1 + t2 0

t1 − t2 0 0 t1 + t2 + 2t3

 ·

(29)

Also Vidal and Tarrach [9] have defined another quantity
called random robustness, which is defined as robustness
of ρ relative to maximally random state I/n. For Bell de-
composable states considered here we can evaluate it as
follows. Using the convexity of the set of density matrices,
we can write ρ′s as (see Fig. 3),

ρ′s =
1

1 + s0
(ρ+ s0 ρ0), (30)

where ρ0 = I/4 and

s0 =
| t t′ |
| t′O | = −(1+t1+t2+t3) = 2(2p4−1) = 2C, (31)

is random robustness of ρ. Note that for the states con-
sidered here separable matrix ρ′s is same as the one given
in equation (28) but with ρ′′s = I/4.

It follows from equation (30) that arbitrary density
matrix ρε = ερ+ (1 − ε)ρ0 is separable provided that ε is
sufficiently small i.e., ε ≤ 1/(1 + s0). This means that
random robustness of all entangled states can be used
to obtain upper bound for the size of neighborhood of
the maximally random density matrix. The problem that
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there exists a sufficiently small neighborhood of the max-
imally random density matrix inside which all density
matrices are separable is addressed in reference [16]. In
reference [17] upper and lower bounds on the size of neigh-
borhood and implications of the bounds for NMR quan-
tum computing has been shown.

4 Robustness of entanglement under LOCC

In this section we obtain robustness for a class of states
which can be obtain from BD states via some local op-
erations and classical communications (LOCC). Our ap-
proach is based on the fact that a full rank two qubit
density matrix can be obtained from a unique Bell decom-
posable state by using a suitable local filtering operation
on one single copy. This idea has been already used in
reference [18] to parameterize the manifold of states with
constant concurrence in order to obtain the lowest possible
value of negativity for a given concurrence. Also, the re-
lation between local filtering operation and Bell violation
has been shown in reference [19].

A general LOCC operation is defined by multi-local
super operator that does not increase the trace. Mathe-
matically, a general LOCC operation can be represented
on a bipartite state ρ by [20,21]

ρ′ =
∑

i(Ai ⊗Bi)ρ(Ai ⊗Bi)†

Tr (
∑

i(Ai ⊗Bi)ρ(Ai ⊗Bi)†)
, (32)

where
∑

i A
†
iAi ≤ 1 and

∑
i B

†
iBi ≤ 1. In this paper we

restrict ourself to the case that LOCC operation is repre-
sented by single local filtering, i.e.

ρ′ =
(A⊗B)ρ(A⊗B)†

Tr((A⊗ B)ρ(A⊗B)†)
, (33)

where operators A and B can be written as

A⊗B = UA f
µ,a,m ⊗ UB f

ν,b,n, (34)

where UA and UB are unitary operators acting on sub-
systems A and B, respectively and the filtration f is de-
fined by

fµ,a,m = µ(I2 + am · σ),

fν,b,n = ν(I2 + bn · σ). (35)

We now perform LOCC of the form (33) on BD states
given in equation (2) to obtain transformed density matrix

ρ =
∑

i

pi

∣∣ψi

〉 〈
ψi

∣∣ , (36)

where unnormalized vectors
∣∣ψi

〉
are defined by∣∣ψi

〉
= (A⊗B) |ψi〉 , (37)

such that 〈
ψi|ψj

〉
= Kij , (38)

and

pi =
pi

Tr((A ⊗B)ρ(A⊗B)†)
,

Tr
(
(A⊗B)ρ(A⊗B)†

)
=
∑

i

piKii. (39)

As defined by Wootters in [8] states
∣∣∣ψ̃〉 can be written as∣∣∣ψ̃〉 = (σy ⊗ σy) |ψ∗〉 , (40)

where |ψ∗〉 is the complex conjugate of |ψ〉
when it is expressed in a standard basis such as
{|↑↑〉 , |↑↓〉}, {|↓↑〉 , |↓↓〉} and σy represent Pauli matrix in
local basis {|↑〉 , |↓〉}. Using equations (37, 40), we can
easily seen that〈

ψi|ψ̃j

〉
= det(A) det(B)

〈
ψi|ψ̃i

〉
= det(A) det(B)ηiδij , (41)

where we have used A†σyA
∗ = det(A)σy , and η2 = η3 =

−η1 = −η4 = 1. As it is shown in references [20,21], the
concurrence of the state ρ transforms under LOCC of the
form given in equation (33) as

C(ρ) =
det(A) det(B)

Tr((A⊗B)ρ(A⊗B)†)
C(ρ). (42)

Now consider the following pseudomixture for ρ

ρ = (1 + s)ρ′s − sρ′′s , (43)

where

ρ′s =
∑

i

p′i
∣∣ψi

〉 〈
ψi

∣∣+∑
i,j

Mij

∣∣ψi

〉 〈
ψj

∣∣ , (44)

ρ′′s =
∑

i

p′′i
∣∣ψi

〉 〈
ψi

∣∣+∑
i,j

Nij

∣∣ψi

〉 〈
ψj

∣∣ . (45)

From equation (43) it follows that following equations
should be hold

pi = (1 + s)p′i − sp′′i , (46)

(1 + s)Mij − sNij = 0. (47)

In the sequel we want to obtain robustness using a new
norm defined by

‖A‖ :=
√

Tr(AÃ), (48)

where Ã is defined according to equation (40). With re-
spect to this norm the distance between two density ma-
trices ρ1 and ρ2 is defined by

‖ρ1 − ρ2‖ =
√

Tr((ρ1 − ρ2)(ρ̃1 − ρ̃2)). (49)
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By using equation (49) robustness of ρ relative to ρ′′s is
defined by

s =
‖ ρ− ρ′s ‖
‖ ρ′s − ρ′′s ‖ =

√
Tr(ρ− ρ′s)(ρ̃− ρ̃′s)

Tr(ρ′s − ρ′′s )(ρ̃′s − ρ̃′′s )
· (50)

Using equations (44, 45, 47) we get

s =

√ ∑
i(pi − p′i)2 + Tr(MM∗)∑

i(p
′
i − p′′i )2 + Tr(M −N)(M −N)∗

=

√ ∑
i(pi − p′i)2 + Tr(MM∗)∑

i(p
′
i − p′′i )2 + 1

s2 Tr(MM)∗
, (51)

where it can be solved for s

s =

√∑
i(pi − p′i)2∑
i(p

′
i − p′′i )2

· (52)

This equation shows that in LOCC transformed density
matrix ρ given in equation (36) only diagonal elements of
ρ′s and ρ′′s play role in robustness when it is evaluated with
the norm defined by (48). We now restrict ourselves to spe-
cial LOCC operations for which Kii = K for i = 1, 2, 3, 4.
To this end we use representation given in equation (7)
for Bell states and we get

Kii = Tr(
〈
ψi|ψi

〉
)

= µ2ν2

(1 + a2)(1 + b2) + 4ab
∑

j

t
(i)
j mjnj

 ,

(53)

where t
(i)
j denote coordinates of Bell state |ψi〉 in

tetrahedral, namely (1,−1, 1), (−1, 1, 1), (1, 1,−1) and
(−1,−1,−1), respectively. After some algebra we can see
that conditions Kii = K happen in the cases that

mini = 0 for i = 1, 2, 3, or ab = 0. (54)

Under this restriction we get

pi =
pi

K
· (55)

On the other hand normalization conditions of ρ′s and ρ′′s
lead to ∑

i

p′i =
1
K
,

∑
i

p′′i =
1
K

· (56)

Equations (55, 56) show that in order to obtain robustness
of ρ it is enough to restrict ourselves to a new tetrahedral
where its dimensions is contracted by factor 1/K. Using
the similar procedure that we did for Bell decomposable
states, we can easily evaluate robustness for these states

s = 2p4 − 1 =
K

det(A) det(B)
C(ρ), (57)

i.e. under restricted LOCC operation robustness does not
change.

5 Conclusion

In this work we have obtained robustness of entanglement
for Bell decomposable states. It is shown that for these
states robustness is equal to their concurrence. It is also
shown that the corresponding separable states that wipe
out all entanglement of the states are on the boundary of
separable states. The random robustness of these states
is also obtained. By defining a new norm based on spin
flip operation, robustness of a class of states obtained via
some LOCC operations is also obtained. The LOCC oper-
ation which we consider in this paper is restricted to single
filtering satisfying equation (54). The general local filter-
ing and its effect on robustness of entanglement has been
investigated in [22]. Also the effect of a general LOCC
operation with multi-local super operator on robustness
of entanglement is yet an open problem which is under
investigations.
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